Reg. No.:	
Nome:	

III Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS

MAT 3C13: Complex Function Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Attempt any four questions from this Part. Each question carries 4 marks.

- 1. Define the following terms:
 - i) Period module of a meromorphic function
 - ii) Discrete module.
- 2. Show that the series $\sum_{n=1}^{\infty} n^{-z}$ converges uniformly and absolutely on a subset of the complex plane \mathbb{C} .
- 3. Is $\mathbb{C} \{0\}$ is simply connected? Justify your answer.
- 4. Is the sets $\{z:|z|<1\}$ and $\mathbb C$ are homeomorphic? Justify your answer.
- 5. Prove that a harmonic function u in $\mathbb C$ is infinitely differentiable.
- 6. Given that v_1 and v_2 are two harmonic conjugates of a harmonic function u. Prove that $v_2 - v_1 = c$, where c is a constant.

PART - B

-2-

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) Prove the following:
 - i) Let $S = \{z : \text{Re}z \ge a\}$ where a > 1. If $\epsilon > 0$, then there is a number $\delta > 0$, $0 < \delta < 1$, such that for all $z \in S$, $\int_{\alpha}^{\beta} (e^t 1)^{-1} t^{z-1} dt < \epsilon \text{ whenever } \delta > \beta > 0$
 - ii) Let $S = \{z : \text{Re}z \le A\}$ where $-\infty < A < \infty$. If $\epsilon > 0$, then there is a number k > 1 such that for all $z \in S$, $\left| \int\limits_{\alpha}^{\beta} (e^t 1)^{-1} t^{z-1} dt \right| < \epsilon$ whenever $\beta > \alpha > k$.
 - b) Prove: A non-constant elliptic function has equally many poles as it has zeroes.
- 8. With the usual notations, prove that :

a)
$$\wp(2z) = \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)} \right)^2 - 2\wp(z)$$

b)
$$\wp'(z) = -\sigma(2z) / \sigma(z)^4$$

c)
$$\beta(z)$$
 $\beta'(z)$ 1 = 0 $\beta(u+z)$ $-\beta'(u+z)$ 1

d)
$$\frac{\wp'(z)}{\wp(z)-\wp(u)} = \zeta(z-u) + \zeta(z+u) - 2\zeta(z)$$

- 9. a) Prove that Riemann's zeta function ζ has no other zeroes outside the closed strip $\{z: 0 \le z \le 1\}$.
 - b) Prove that if Re z > 1, then $\zeta(z) = \prod_{n=1}^{\infty} \left(\frac{1}{1 p_n^{-z}}\right)$ where p_n is a sequence

Unit - II

- 10. State and prove Schwarz Reflection Principle.
- 11. a) Let $\gamma:[0,1]\to\mathbb{C}$ be a path and let $\{(f_t,D_t):0\le t\le 1\}$ be an analytic continuation along γ . Show that $\{(f_t',D_t):0\le t\le 1\}$ is also a continuation along γ .
 - b) Let (f, D) be a function element which admits unrestricted continuation in the simply connected region G. Prove that there is an analytic function $F: G \to \mathbb{C}$ such that F(z) = f(z) for all z in D.
 - c) Is the region $\{z \in \mathbb{C} : 1 < |z| < 2\}$ is simply connected? Justify your answer.
- 12. State and prove the Mittag-Leffler's theorem.

Unit - III

- 13. a) State and prove Jensen's formula.
 - b) State and prove Maximum Principle (Second Version).
- 14. Prove that the Dirchlet problem can be solved in a unit disk.
- 15. a) Define the Poisson kernel $P_r(\theta)$. Prove that $P_r(\theta) = \text{Re}\left(\frac{1+re^{i\theta}}{1-re^{i\theta}}\right)$.
 - b) Prove that $P_r(\theta) < P_r(\delta)$ if $0 < \delta < |\theta| \le \pi$.
 - c) For |z| < 1 let $u(z) = Im \left[\left(\frac{1+z}{1-z} \right)^2 \right]$. Show that u is harmonic.